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ABSTRACT 

Organization of Petroleum Exporting Countries (OPEC) and non-OPEC supply, oil balance, oil demand by Organization for Economic Cooperation 

and Development (OECD) and non-OECD members, money market managers' long positions, US consumer price index and spot prices of crude 

oils like New York Mercantile Exchange West Texas Intermediate (NYMEX WTI), Intercontinental Exchange (ICE) Brent, OPEC Reference 

Basket (ORB), and other crude oils are basic elements driving the patterns seen in the market pricing of crude oils. Data between 2008 and 2022 

were obtained for this study from OPEC Monthly Oil Market Reports. This research evaluates the performance of two machine learning models, 

Support Vector Regression (SVR) and Extreme Gradient Boosting (XGBoost), in predicting crude oil prices for three major benchmarks: OPEC 

Reference Basket (ORB), NYMEX WTI, and ICE Brent. Using key performance metrics such as Mean Squared Error (MSE), Root Mean Squared 

Error (RMSE), and R-squared (R²), the study highlights the strengths and weaknesses of each model in both stable and volatile market conditions. 

SVR shows strong predictive accuracy, particularly for ICE Brent, but struggles with price volatility in the ORB and NYMEX WTI datasets. 

XGBoost is more robust in handling volatility and non-linear relationships. The findings have important economic implications for market 

participants, suggesting that while SVR is suited for stable pricing environments, XGBoost is better equipped to handle the unpredictability of more 

volatile markets.  
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1.0 INTRODUCTION 

Ensemble algorithms are sophisticated techniques that combine the 

predictions of multiple base models to improve overall forecasting 

accuracy and robustness. They capture complex nonlinear 

relationships, handle high-dimensional data, and effectively deal 

with noisy and dynamic patterns inherent in data. These algorithms 

leverage the diversity of multiple models to mitigate overfitting and 

improve generalisation performance. By evaluating their accuracy, 

robustness, and computational efficiency, we seek to gain insights 

into the most effective algorithm for this specific application, which 

can inform decision-making processes, risk management strategies, 

and investment decisions in the global crude oil market. 

The global crude oil market is highly robust, with relatively few 

producers. In 2021, the total world crude oil demand averaged 96.44 

million barrels per day (mb/d), with OECD countries, non-OECD 

and OPEC-13 providing 29.56, 31.9, and 28.9 mb/d respectively. 

Crude oil prices are determined by the market forces of demand and 

supply, with higher demand in rapidly developing countries driving 

prices in the upward direction. Additionally, speculative activities 

of money managers through their total futures and net-long positions 

in crude oil futures contribute significantly to price volatility. The 

exchange value of the US dollar also plays an important role in the 

fluctuations of crude oil prices globally. Seven fundamental factors 

are responsible for crude oil price fluctuations. Financial markets, 

OPEC and non-OPEC crude oil supply, crude oil balance, oil 

demand by OECD and non-OECD members, and spot prices of 

crude oils such as NYMEX WTI, ICE Brent, EIA’s Imported 

Refiner Acquisition Cost (IRAC), OPEC Reference Basket (ORB) 

and other crude oils determine the differences in other crude oils 

globally. ExxonMobil (2021) claims that worldwide crude oils can 

be divided into light, medium, and heavy categories based on 

density (API gravity). Sweet crude oils have a sulphur level between 

zero percent and 0.59 percent of the weight, while sour crude oils 

range from 0.62 percent to 3.85 percent by weight. The new OPEC 

Reference Basket contains thirteen crude oils, including Saharan 

Blend (Algeria), Iran Heavy (Iran), Zafiro, Basrah Medium (Iraq), 

Girrasol, Kuwait Export (Kuwait), Es Sider (Libya), Bonny Light 

(Nigeria), Djeno, Merey, Arab Light (Saudi Arabia), Murban 

(UAE), and Rabi Light. The American Petroleum Institute (API) 

gravity and Sulphur content of the WTI are respectively 39.6 

degrees and 0.24 percent, while Brent has an API gravity of 38.3 

degrees and contains 0.37 percent sulfur. The NYMEX futures price 

for crude oil is the value of a futures contract which depends purely 

on market forces on trading one thousand barrels of the light-sweet 

crude oil at a particular time. The IRAC represents the volume-

weighted average cost of all heavy and light crude oils imported into 

the United States during a specific period. To ensure stable, open, 

and predictable oil markets, producers and consumers must act 

responsibly regarding supply and demand security. The behavior of 

crude oil. The behavior of crude oil market prices on a worldwide 

scale is influenced by several factors, as was previously mentioned. 

The directional relationships and interactions between these 

variables and spot prices are shown in Figure 1. 
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Figure 1: Determinants of Crude Oil Prices and their Interactions 

Source: US Energy Information Administration (EIA, 2022) 

These links serve as the foundation for this study, which aims to 
establish two objectives 

• Compare the performances of three widely used 

ensemble machine learning algorithms such as extreme 

gradient boosting, and support vector regression on the 

crude oil datasets. 

• To determine the most relevant determinants for 

modeling the benchmark crude oil prices in the global 
crude oil market.  

Researchers from all around the world have conducted several 

studies on the modeling and forecasting of crude oil prices. For 

instance, Lu et al. (2021) created a framework for selecting and 

forecasting the key variables that affect the price of crude oil. The 

study used a Long-Short Term Memory Network, Spike-Slab 

LASSO, Bayesian model average (BMA), and an elastic net 

regularized generalized linear model (GLMNCI) (LSTM). Based on 

a random walk, six forecasting methods—Walvet neural networks 

(WNN), Elman neural networks (ENW), neutral ELM networks, 

autoregressive integrated moving average models (ARIMA), and 

generalized regression neural network model—were compared 

(GRNN). According to the analysis, the LSTM has the greatest 

precision. In a different work, Bai, Yuying, and Shonyang (2021) 

generalized integral-valued forecasts to include uncertainty and 

variability in the price of crude oil and presented a two-stage 

forecasting method based on interval-valued time series. This 

process outperformed some benchmark models when compared, it 

was discovered. Krzysztof and Liu conducted a study that is 

comparable in that it deals with the significant problem of 

uncertainty that is present in time series analysis in 2021. The study 

compared several time-varying VARs that included geopolitical risk 

as an endogenous component. They concluded that real prices for 

crude oil vary significantly over time.  

Dondukova and Lin (2021) used the Euler-Mamyama scheme as an 

approximation of the Heston model to model the volatility of WTI 

and Brent. In particular, it was discovered that the stochastic 

volatility model outperformed all GARCH models when they were 

examined via the RMSE and MAE. Waqas et al. (2018) developed 

an ensemble empirical model decomposition (EEMD) To anticipate 

the price of crude oil. It has been demonstrated that this alternative 

method to traditional econometric methods aids in dealing with non-

stationarity and non-linearity of time series, particularly crude oil 

prices. Wajdi and Dawud (2018) fitted a crude oil price regression 

on its key variables chosen using PCA. These are the geopolitical 

and fundamental factors. Analysis revealed that the most crucial 

factors affecting crude oil prices are fundamentals and the 

responsibilities of OPEC members. Wassin and Ibrahim (2018) 

analyse the linear and non-linear regression models to examine the 

relationships between crude oil prices and stocks. They used the 

informational value of oil demand and the link between crude oil 

and equities prices to fit the linear models. Similarly, a non-linear 

model was fitted using fuzzy neural networks and genetic 

algorithms. In terms of the accuracy of the statistical forecasts made 

outside of the sample, some of the fitted linear models performed 

the best.  

By combining prior knowledge from the current and anticipated 

structure of the oil markets with the Bayesian technique, Chul-Yoon 

and Sung-Yoon (2016) predicted long-term crude oil prices. The 

model's stated factors for determining crude oil prices include 

factors including global oil demand and supply, economic 

conditions, upstream costs, and geographic occurrences. The OLS 

and neural network were contrasted using this model. The fitted 

model was found to perform better on the forecasting performance 

test alone than these two models. Merk (2016) used the daily return 

of crude oil prices to examine the relationship between global 

financial crises and volatility. They concluded that crude oil prices 

are extremely volatile and substantially respond to shocks from the 

global financial crisis after fitting volatility models such as the 

APGARCH and FIAPGARCH models. To estimate the price of 

crude oil, Ani and Rubaidah (2014) devised a hybrid model that 

combines wavelet and multiple linear regression. PCA and the 

Mallat wavelet transform are used in this work. To choose the best 

model for the multiple linear regression on the WTI, they used 

Particle Swarm Optimisation (PSO). The WMLR outperformed the 

ARIMA, MLR, and GARCH models when they were put side by 

side. 

 

2.0 MATERIALS AND METHODS 

2.1 Materials 

The data used in this study includes 176 monthly observations 

between 2008 and 2022 of the prices of a barrel of ORB (orbt), WTI 

(wtit), and Brent (brentt) in US dollars, as well as data on OPEC 

supply (opec_supplyt), non-OPEC supply (nonopec_supplyt), 

money market managers' net long positions (mo_net_longt), OECD 

demand (oecddemandt), non-OECD demand (nonoecddemandt), the 

oil balance (balancet), and US Consumer Price Index (us_cpit). The 

source of data used is the OPEC Monthly Oil Market Reports.  

 

2.2 Methods 

2.2.1 Extreme Boosting Machine Learning Algorithm 

Extreme Boosting is a popular ensemble machine learning algorithm 

used in various domains, including time series forecasting. It 

encompasses implementations like XGBoost, LightGBM, and 

CatBoost, each with unique features and optimisations. The 

algorithm follows a boosting concept and ensemble methodology. 

These algorithms allow base learners, typically decision trees, to be 

sequentially trained to minimize the overall prediction error by 

emphasizing difficult instances. The algorithm iteratively adds 

decision trees to the ensemble, updating the predictions and 

minimising the loss function. Parameter tuning and model 

optimisation are crucial for effective application. Vital 

considerations include the learning rate, tree depth and complexity, 

and regularisation parameters. The formula for updating the 

ensemble model involves combining the previous predictions with 

the contribution of the newly added tree. Each iteration minimises a 

specific loss function concerning the ensemble's errors. The specific 

implementation and formulas may vary depending on the Extreme 

Boosting algorithm used. Additional optimisations and 

enhancements are introduced in algorithms like XGBoost, 

LightGBM, and CatBoost to improve training speed, accuracy, and 

handling of different data types. In Extreme Boosting, the algorithm 

aims to minimise a specific loss function during the training process. 

The choice of loss function depends on the task at hand, such as 

mean squared error (MSE) or mean absolute error (MAE) for 

regression problems. During each iteration of the boosting process, 

a new decision tree is added to the ensemble to reduce the overall 

loss. The tree is constructed to minimise the chosen loss function 

concerning the residuals or errors made by the ensemble model on 
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the previous iterations. By iteratively updating the ensemble and 

adding trees that target the remaining errors, the algorithm gradually 

improves the overall model performance and reduces the prediction 

errors. This process continues until a predefined stopping criterion 

is met, such as reaching a maximum number of iterations or 

achieving satisfactory performance. The iterative nature of Extreme 

Boosting, combined with the minimisation of the loss function, 

allows the algorithm to effectively learn complex patterns and make 

accurate predictions. 

Mathematical Aspect of Extreme Gradient Boosting Ensemble 

Given a dataset with n observations and m features  

( ) ( ), , ,m

i i i iD x y D n x R y R= =    (1) 

Where we predicted the value of the ensemble tree model using K 

additive functions expressed as  

( )
1

ˆ ,
K

ï k i k

k

y f x f F
=

=    (2) 

Where F is the regression tree space computed as 

( ) ( ) ( ): ,m T

x qF f x x q R T R = = →  (3) 

q represents the structure of each tree,  T is the number of nodes 

(leaves) in the tree and fk is a function that corresponds to an 

independent tree structure q and leaf weights ω. Given a training 

dataset with input features x and target variable y, and an ensemble 

model represented by f (x), the goal is to minimise the loss function  

( ) ( )( ) ( )( ) ( )1
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n
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     (4) 

where l is a differentiable convex objective function to calculate the 

error between predicted and measured values; yi and yi are regulated 

and predicted values, respectively; t shows the repetitions to 

minimise the errors; and Ω is the complexity penalised with the 

regression tree functions: 

( )
21

2
kf T   = + ,  (5) 

ω is the vector of the score for the blades, and c is the minimal loss 

required for the further isolation of a blade node. λ is the 

regularisation function. In addition, c and λ are parameters that can 

control the complexity of the tree, and the regularisation term helps 

to avoid overfitting by smoothening the final learned weights. 

Taylor expansion is applied to the objective function to simplify it 

further as 
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where gi and hi are the first and second derivatives obtained on the 

loss function, respectively. Specifically,  
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The optimal objective function in equation (6) as a function of the 

1st and 2nd derivatives is 
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The XGBoosting process involves a series of steps where a new 

decision tree is added to the group to reduce errors. This new 

decision tree, denoted as g, is trained to make predictions that are 

closer to the actual target variable, y, compared to the current group 

of models. After training, this new tree becomes part of the 

ensemble. This cycle repeats, with each new tree trained to improve 

predictions based on the current ensemble. The ultimate goal of 

Extreme Gradient Boosting is to create an ensemble model, f(x), that 

minimizes the total errors across all these steps. By minimising 

errors at each step and updating the ensemble accordingly, XGBoost 

gradually enhances the model's predictive accuracy, leading to a 

more precise final model. In this study, the researchers compared 

XGBoost with other ensemble methods like bagging, random forest, 

and support vector regression, as proposed in the existing literature. 

2.2.2 Support Vector Regression (SVR) 

Support Vector Regression (SVR) is a non-linear regression method 

that can capture non-linear relationships between the input features 
and the target variable. It is based on the concept of support vector 

machines (SVMs), which were originally developed for 

classification tasks. SVR uses a kernel function to map the input 

features into a higher-dimensional space where the relationship 

between the features and the target variable may become linear. In 

this transformed space, SVR attempts to find a linear regression 
model that fits the data while maximising the margin (the distance 

between the regression line and the closest data points, which are 

the support vectors). The choice of kernel function, such as the radial 
basis function (RBF) kernel, allows SVR to model complex, non-

linear relationships. It has the flexibility to capture both linear and 

non-linear relationships in the data, depending on the choice of 
kernel and model parameters. This makes SVR a powerful tool for 

regression tasks with complex data patterns. Support Vector 

Regression (SVR), support vectors, and weights play important 
roles in understanding the model. The support vectors are data 

points from the training dataset that have the most influence on the 

SVR model. These are the data points that are closest to the SVR's 
decision boundary (the hyperplane) and are used to define the 

margin. They are the points for which the model's prediction is either 

equal to the target value or falls within a certain distance (the 
margin) from the target value. They play a crucial role in 

determining the SVR model's performance and are the ones 

responsible for shaping the model's regression line. Hence, Support 
vectors are the critical data points that have the most influence on 

the model's prediction. In SVR, weights represent the importance or 

contribution of each support vector to the model's prediction. Each 
support vector is associated with a weight that signifies its 

significance in shaping the regression model. Weights are 

essentially the coefficients of the support vectors in the SVR 
equation. Support vectors with larger weights have a more 

substantial impact on the model's decision boundary and, 

consequently, on its predictions. Vector weights provide 
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information about the importance of different data points in the SVR 

model, helping to understand which data points are the most 
influential in making predictions. Support vectors are the data points 

closest to the decision boundary, and they have a direct impact on 

the SVR model's predictions. The weights associated with these 
support vectors indicate their relative importance in shaping the 

model. By examining support vectors and their weights, we gain 

insights into which data points are driving the SVR model's 
predictions and the significance of each of these points in the 

regression analysis. By analysing the weights, allows us to pinpoint 

the most influential data points and focus on their characteristics, 
which are valuable for understanding the key factors driving the 

SVR model's performance and enhancing its predictive capabilities. 

High-level SVR algorithm involves data pre-processing by 
standardizing or normalising the input features to ensure they are on 

a similar scale, choosing a kernel function (linear or radial basis 

function) to transform the input features and formulation of the SVR 

optimisation problem. The objective is to find a hyperplane that has 

the maximum margin while minimising the error (the difference 

between the predicted and actual values). The introduction of a soft 
margin allows some instances to be within the margin or even on the 

wrong side of the hyperplane. This is done to handle cases where a 

strict margin might not be achievable due to noise or outliers. We 
apply cross-validation to control the complexity of the model and 

prevent overfitting. We define a loss function that penalises errors 

in prediction. Common loss functions include epsilon-insensitive 
loss or mean squared error. Solve the dual problem using 

optimisation techniques. The solution provides the support vectors 

and their corresponding weights. Use the obtained support vectors 
and weights to make predictions on new, unseen data. The basic idea 

is to find a hyperplane that not only fits the data well but also has a 
maximum margin. SVR is especially useful when dealing with non-

linear relationships between input features and the target variable, 

thanks to the kernel trick that allows for implicit mapping to higher-
dimensional feature spaces. 

To determine the support vectors and their associated weights, we 

formulated a dual SVR problem which was solved using the 
Lagrangian dual optimisation. Generally, the dual problem is a 

maximisation problem. The Lagrangian function was formulated by 

combining the objective function of the primal problem with the 
constraints each multiplied by the Lagrange multiplier αi. The 

Lagrangian for linear and radial basis function kernels are given as 

follows. 
 

Radial Basis Function Kernel (RBF) 

The primal problem for SVR with an RBF kernel K (Xi, Xj) is given 
as 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
1

2
‖𝒘‖2 + 𝐶 ∑ (𝜉𝑖 +  𝜉𝑖

∗)𝑛
1  (12) 

Subject to constraints: 

y𝑖 − 𝑓(𝑥𝑖) ≤  𝜀 + 𝜉𝑖 

𝑓(𝑥𝑖) − y𝑖   ≤   𝜀 + 𝜉𝑖
∗   (13) 

𝜉𝑖 , 𝜉𝑖
∗   ≥   0,   ∀ 𝑖 =  1, 2, 3, … … … . , 𝑛 

𝜀 is the acceptable error, 𝜉𝑖 , 𝜉𝑖
∗are the slacks and f(xi) are the 

predicted output using the RBF kernel. C in the minimisation 

problem is the regularisation parameter. The Lagrangian for the 
RBF kernel is  

𝐿(𝐰, 𝑏, 𝛼, 𝛼∗, 𝜉𝑖 , 𝜉𝑖
∗) =  

1

2
‖𝑤‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑛
1  + ∑ 𝛼𝑖

∗( 𝜉𝑖
∗ −𝑛

1

 𝜀 − y𝑖 − 𝑓(𝑥𝑖)) + ∑ 𝛼𝑖 ( 𝜉𝑖 −  𝜀 +  y𝑖 − 𝑓(𝑥𝑖)) 𝑛
1   (14) 

f(xi) is the output of the RBF expressed as: 

𝑓(𝑥𝑖) = ∑ 𝛼𝑗(𝐱𝒋)𝐾(𝐱𝒋, 𝐱𝒊) + 𝑏𝑛
𝑗=1      

     (15) 

where 𝐾(𝐱𝒋, 𝐱𝒊) is the RBF kernel. The dual problem involves 

maximising the Lagrangian for the Lagrange multipliers 𝛼, 𝛼∗ 

subject to the constraints 𝛼, 𝛼∗ ≥ 0 for all i. The RBF kernel function 

and its parameters play a crucial role in the dual optimisation 
problem. 

Linear Kernel 

Just like the RBF kernel, the primal for the dual problem in equation 
(1) for the linear kernel is subject to the following constraints 

y𝑖 − (𝐰 ⋅ 𝐱𝒊 + 𝑏) ≤  𝜀 + 𝜉𝑖 

(𝐰 ⋅ 𝐱𝒊 + 𝑏) − y𝑖   ≤   𝜀 +  𝜉𝑖
∗     

     (16) 

𝜉𝑖 , 𝜉𝑖
∗   ≥   0,   ∀ 𝑖 =  1, 2, 3, … … … . , 𝑛 

The Lagrangian for the linear kernel is  

𝐿(𝐰, 𝑏, 𝛼, 𝛼∗, 𝜉𝑖 , 𝜉𝑖
∗) =  

1

2
‖𝒘‖2 + 𝐶 ∑ (𝜉𝑖 +  𝜉𝑖

∗)𝑛
1  + ∑ 𝛼𝑖

∗( 𝜉𝑖
∗ −𝑛

1

 𝜀 −  y𝑖 + 𝐰 ⋅ 𝐱𝒊 + 𝑏) + ∑ 𝛼𝑖 ( 𝜉𝑖 −  𝜀 + y𝑖 − 𝐰 ⋅ 𝐱𝒊 −  𝑏) 𝑛
1  

 (17) 

The estimation process is one of finding a hyperplane with a 

maximum margin while minimising the error which involves 

solving the constrained optimisation primal problem. The slack 
variables allow for the introduction of soft margins which allows 

some instances to be within the margin or on the wrong side of the 

hyperplane. We employed the epsilon insensitive loss function and 
the mean square error to penalise errors in prediction. The solution 

of the Lagrangian dual optimisation provides the support vectors 

and their associated weights which were used to define the function 
f(x) for predicting the target variable. 

3.0 RESULTS AND DISCUSSION 

We present the analysis and results derived from the application of 

the two discussed machine learning models to forecast benchmark 

crude oil prices, including ORB, Brent, and WTI. The performance 

of the Support Vector Regression (SVR) and XGBoost was 

evaluated using key metrics like Mean Squared Error (MSE), Root 

Mean Squared Error (RMSE), and R² for both training and testing 

datasets. By comparing these metrics, we aim to establish the 

models' effectiveness in predicting crude oil prices across different 

datasets, providing insights into their accuracy and generalisation 

capabilities. The following are the detailed findings and visual 

comparisons, leading to a thorough assessment of each model's 

predictive performance.  

 

Table 1: Summary of Training on the XGBoost models with hyperparameters 
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model nround max_depth eta gamma colsample_bytree min_child_weight subsample

xgboost_wti 100 3 0.1 0.1 0.6 1 0.8

xgboost_brent 100 3 0.1 0.2 0.6 1 0.8

xgboost_orb 100 3 0.1 0.1 1 1 1
 

 

Three different models on ORB, Brent and WTI were built using 

stringent parameters.  The training process for XGBoost models on 

the three oil benchmarks is outlined in Table 1. For each model, the 

tuning parameters nrounds and max_depth were held constant at 100 

and 3, respectively. The models were optimised using Root Mean 

Square Error (RMSE) to identify the best-performing parameters. 

Common final values across the models include a learning rate (eta) 

of 0.1, a min_child weight of 1, and subsampling (subsample) values 

set at 0.8 for WTI and Brent and 1 for ORB. The specific differences 

in the models come from gamma, which regulates the minimum loss 

reduction for splitting nodes. It was set at 0.2 for WTI, 0.1 for Brent, 

and ORB. Additionally, colsample_ bytree (the proportion of 

features used for each tree) was 0.6 for both WTI and Brent but set 

to 1 (all features) for ORB. Each model was trained with 182 

features, using 100 iterations (boosting rounds), and employed the 

reg: squared error objective to minimise squared error during 

regression. The table presents hyperparameters for three XGBoost 

models (xgboost_vti, xgboost_brent, and xgboost_orb). All models 

undergo 100 boosting rounds with a maximum tree depth of 3, 

ensuring the trees are shallow to control overfitting. The learning 

rate (eta) is set to 0.1 for all, balancing model performance and 

convergence speed. The minimum loss reduction to make a split 

(gamma) is set at 0.1 for xgboost_vti and xgboost_orb, allowing 

moderate splits, while xgboost_brent has a stricter requirement with 

a gamma of 0.2, limiting tree complexity unless significant gains are 

achieved. For feature sampling (colsample_bytree), xgboost_vti and 

xgboost_brent use 60% of the features for each tree, while 

xgboost_orb uses all features (100%). The minimum sum of 

instance weights needed to create a new leaf node 

(min_child_weight) is set to 1 across all models, ensuring trees do 

not split unless meaningful. Finally, xgboost_vti and xgboost_brent 

use 80% of the training data for each tree (subsample = 0.8), while 

xgboost_orb uses all the data (subsample = 1), potentially increasing 

the risk of overfitting for the latter. 

 

Figure 2: Variable Importance on ORB, ICE Brent and NYMEX WTI 
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The three variable importance plots illustrate how different variables 

contribute to the prediction models for oil benchmarks: OPEC 

Reference Basket (ORB), ICE Brent, and NYMEX WTI. In the 

ORB model, Brent price overwhelmingly dominates the predictions 

with an importance close to 0.8, while the other variables contribute 

very little. This suggests that the model heavily relies on an ICE 

Brent to make accurate predictions for the ORB. For the ICE Brent 

model, a similar trend is observed, where one variable WTI shows 

the highest importance at around 0.5. However, the influence of 

other variables is minimal, indicating that the Brent model also 

focuses on NYMEX WTI as the key predictor for most of its 

forecasting accuracy. In contrast, the NYMEX WTI model exhibits 

a broader distribution of variable importance. While one variable 

(ORB) still stands out with an importance around 0.4, other 

variables play a more significant role compared to the other two 

models. This suggests that the WTI model captures a wider range of 

factors in making predictions, making it more dependent on multiple 

variables. 

 

 

https://fepi-jopas.federalpolyilaro.edu.ng/


A comparative analysis of extreme gradient 
boosting and support vector regression  

for modeling benchmark crude oil prices  FEPI-JOPAS 2024:6(2):1-11 Alabi & Ojo 

https://fepi-jopas.federalpolyilaro.edu.ng 

_____________________________________________________________________________________ 

7 

 

 

Figure 3: Plot on Predicted Values on ORB, WTI and Brent 

 

The predicted values generated by the XGBoost models for the 

OPEC Reference Basket (ORB), NYMEX WTI, and ICE Brent 

benchmarks are presented in Figure 3. Across all three benchmarks, 

the predictions show a high degree of variability, with values 

fluctuating between 50 and 125. This suggests that the models 

capture the dynamic changes in the oil markets, reflecting how 

volatile and unpredictable the price movements can be. For the ORB 

and Brent benchmarks, the predictions display more extreme 

fluctuations, reaching up to 125, with noticeable peaks and troughs 

throughout the index range. This highlights that the models are 

sensitive to shifts in the market, perhaps responding to key 

influencing factors like supply and demand changes, geopolitical 

events, or production adjustments. The WTI model shows similar 

oscillations but within a slightly narrower range, peaking around 

100. While the predicted values still show sharp changes, the range 

indicates that the WTI model may be capturing slightly less 

variability compared to the ORB and Brent models. Overall, all 

three models provide predictions that align with the complex and 

volatile nature of the oil price benchmarks they represent. 

We carried out training on three SVR models based on a linear 

kernel and epsilon regression. Epsilon regression allows the model 

to ignore small errors within a specified margin (epsilon). The main 

parameters listed include cost (C), which controls the trade-off 

between maximising the margin and minimising error, and epsilon, 

which defines how much deviation from the actual values is 

tolerated. All models use a linear kernel, meaning the relationship 

between the input features and the target variable is assumed to be 

linear. The WTI model has a cost of 1, which strikes a balance 

between penalising errors and maximising the margin. The epsilon 

value is set at 0.1, allowing some tolerance for prediction errors. 

With 76 support vectors, this model has fewer data points 

influencing the decision boundary, suggesting a simpler model with 

a relatively straightforward decision margin. The higher cost in this 

model likely leads to better performance but with a risk of 

overfitting. The ORB and Brent models both have a lower cost (C = 

0.1), meaning they tolerate more misclassifications in favour of a 

wider margin. They also have a smaller epsilon (0.01), making them 

more sensitive to small prediction errors. These models have more 

support vectors (118 for ORB and 116 for Brent), indicating a more 

complex decision boundary. The higher number of support vectors 

suggests that more data points are influencing the model, possibly 

due to the lower cost and the focus on minimising even small errors. 

We evaluated the performance of the Support Vector Regression 

(SVR) model in predicting crude oil prices for three major 

benchmarks: OPEC Reference Basket (ORB), NYMEX West Texas 

Intermediate (WTI), and ICE Brent. Each benchmark represents a 

critical component of the global oil market, and accurate price 

predictions are essential for risk management, market analysis, and 

strategic decision-making. By analysing major performance metrics 

such as MSE, RMSE, and R², we assess the predictive accuracy of 

the SVR model across both training and testing datasets. This 

analysis aims to highlight the model's strengths and potential areas 

for improvement in forecasting oil prices for these three critical 

benchmarks. 

 

Table 2: Summary of performance metrics on SVR models using the training and test datasets 

Metric 

Training Testing 

ORB Brent WTI ORB Brent WTI 

MSE 2.71 1.126 5.593 1.502 1.501 42.72 

RMSE 1.646 1.061 2.365 1.225 1.225 6.536 

R2 0.995 0.999 0.989 0.996 0.998 0.944 

 

Table 2 presents performance metrics for the SVR models. The table 

is divided into training and testing sets for each dataset. While the 
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model performs well on the ORB and Brent datasets, it struggles to 

generalise to the WTI dataset. This implies that SVR is not well 

suited to the WTI dataset. This is also shown in Figure 4. 

 

 

Figure 4: Bar Chart on Comparison of MSE, RMSE, and R2 across ORB, Brent and WTI SVR models 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Plots on Predicted Values of SVR on ORB, NYMEX WTI and ICE Brent 
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For the OPEC Reference Basket (ORB), the actual versus predicted 

plot shows a good alignment between the SVR model’s predictions 

and actual prices, with data points closely following the diagonal 

line (Figure 5). This suggests that the SVR model effectively 

captures the overall trends in ORB pricing. However, the residual 

plot reveals significant volatility, with wide fluctuations above and 

below the zero line. This indicates that while the model generally 

tracks price trends, it struggles to maintain consistent accuracy, 

especially during periods of price shifts, leading to larger prediction 

errors. For ICE Brent, the actual versus predicted plot similarly 

shows a strong alignment between predicted and actual values, 

indicating good model performance in forecasting Brent crude 

prices. The residual plot shows less volatility than the ORB, 

suggesting that the SVR model is more accurate for Brent pricing. 

The smaller fluctuations in residuals imply that the model is better 

at capturing Brent price movements, though some minor prediction 

errors remain.  

In the WTI plots, the actual versus predicted values reveal that the 

SVR model performs quite well for NYMEX WTI prices. Most data 

points lie close to the diagonal line, indicating that the predicted 

values are fairly aligned with the actual values. This suggests that 

the SVR model is capable of capturing the general price trends in 

the WTI market. However, there are a few deviations, especially at 

the extreme values, implying that the model may have difficulty 

accurately predicting outliers or more volatile price changes. The 

residual plot shows the difference between the actual and predicted 

values. Residuals fluctuate significantly, indicating some instability 

in the model's predictions. The presence of positive and negative 

residuals means that the model occasionally underestimates or 

overestimates prices, with larger fluctuations seen in some data 

points. This suggests that while the model works reasonably well, it 

struggles to consistently predict prices with precision, particularly 

during periods of high volatility. 

The SVR model performs well in predicting both ORB and Brent 

crude prices, with accurate alignment between actual and predicted 

values in both cases. However, the ORB residuals exhibit greater 

volatility, suggesting more significant prediction errors for this 

benchmark compared to Brent. For Brent, the smaller residual 

fluctuations imply more stable and reliable forecasts, which benefits 

market participants involved in Brent-linked contracts. 

Economically, better prediction accuracy for Brent means more 

precise hedging and risk management strategies, while the volatility 

in ORB predictions could increase uncertainty for stakeholders 

relying on ORB forecasts, leading to potential financial 

miscalculations.  

The performance of XGBoost and SVR models using three metrics 

MSE, R², and RMSE are compared in Table 3 and Figure 4. 

Generally, the XGBoost consistently underperforms SVR across all 

datasets and metrics except the NYMEX WTI dataset, 

demonstrating lower prediction accuracy. Specifically, SVR 

achieves lower MSE and RMSE values, indicating better prediction 

accuracy. SVR’s dominance is less pronounced in the WTI dataset. 

The superior performance of SVR over XGBoost in predicting crude 

oil prices has significant economic implications. 

 

Table 3: Summary of Performance Metrics on XGBoost models using the training and test datasets 

 Metrics XGBoost_ORB XGBoost_Brent XGBoost_WTI SVR_ORB SVR_Brent SVR_WTI 

MSE 3.066 2.901 2.896 1.502 1.501 42.71 

RMSE 1.751 1.703 1.701 1.225 1.225 6.536 

R2  0.994 0.995 0.996 0.996 0.998 0.944 
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Figure 6: Comparison of XGBoost and SVR Performance Metrics using Multiple Bar Chart 

 

Accurate forecasting of crude oil prices is crucial for energy 

markets, as it enables stakeholders to make informed decisions 

about production, consumption, investment, and hedging. XGBoost 

can help reduce financial risks associated with price volatility by 

providing more reliable predictions. Governments and policymakers 

can use accurate forecasts to develop effective energy policies and 

ensure energy security. Improved forecasting can contribute to a 

more efficient and stable crude oil market. 

 

4.0 CONCLUSION 

The comparison between XGBoost and SVR models reveals several 

strengths and weaknesses when applied to the ORB, NYMEX WTI, 

and ICE Brent crude oil datasets. SVR demonstrates strong 

performance in terms of alignment between actual and predicted 

values, especially for ICE Brent, where the residuals are relatively 

small, indicating higher predictive accuracy. However, SVR 

struggles with volatility, particularly in the OPEC Reference Basket 

(ORB) and NYMEX WTI datasets, as shown by higher fluctuations 

in the residuals, which leads to less stable predictions during periods 

of significant price swings. On the other hand, XGBoost exhibits 

better resilience to these fluctuations, performing well in volatile 

conditions due to its ability to capture non-linear patterns and 

complex relationships within the data. Nevertheless, XGBoost can 

occasionally overfit the training data, leading to slightly worse 

performance on the testing sets compared to SVR in some cases. 

Economically, these results suggest that SVR may be more suitable 

for stable pricing environments, while XGBoost's flexibility makes 

it ideal for more volatile markets. Accurately predicting crude oil 

prices is crucial for stakeholders involved in futures trading, hedging 

strategies, and policymaking, as it directly impacts investment 

decisions, pricing strategies, and financial planning across the global 

energy sector. 
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